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1 Introduction

Climate science is, or should be, a branch of experimental physics depending on observation
rather than theoretical preconceptions. It is primarily concerned with the relationships between
time series of measurable physical quantities and their long term behaviour. Here we develop a
rigorous and useful statistical calculus of time series and apply it to real world data. We look
at how both global and regional surface air temperature time series are related to atmospheric
carbon dioxide concentration. We reveal geographic patterns of climate sensitivity which, to
date, have eluded climate modellers.

2 Estimating Impulse Response and Sensitivity

In the absence of a moving average component, the regression model which summarises the
relationship between two times series x and y is given by

Ym = α0xm +

p∑
n=1

αn.ym−n + Ξm , m = 1, ...,M (1)

where the regression coefficients, αi, and their confidence limits are estimated using Ordinary
Least Squares. It is termed an ARX(p) model for ‘autoregressive with exogenous variable’.The
sequence of residuals, {ξm}, is given by

ξm = ym −

(
α̂0xm +

p∑
n=1

α̂n.ym−n

)
, m = 1, ...,M (2)

where ym is the sample value or ‘realization’ of Ym and α̂0 to α̂p are the regression coefficients
estimated from the data.

The order, p, is found by testing the residuals, {ξm}, for self correlationby means of the
Ljung-Box test (Ljung and Box, 1978). The Ljung-Box Q statistic and its probability, P , are
calculated for each candidate order, p. The estimated order, p̂, is determined as the least number
of coefficients for which P is greater than some predetermined confidence level for which it can
be assumed the innovation sequence is not self-correlated.

Our best estimate of the relationship between the two time series is given by the convolution

γ̂ ∗ y = α̂0x (3)

where
γ̂0 = 1 (4)

and
γ̂n = −α̂n , n = 1, ..., p̂ (5)

A more useful form of (3) is
y = Î ∗ x (6)
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where Î is given by
Î ∗ γ̂ = α̂0 (7)

and is termed the impulse response. For display purposes and inter-comparison a normalized
impulse response, =, may be used where

= ∗ γ = 1 (8)

Like the regression coefficients, I is a property of the system under investigation and Î is its
estimate. Equation (6) describes the output of the system, y, in response to any input sequence,
x. The sensitivity of the system, S, is defined here as the response at infinity to a unit step
function, Hj , so that

S =

∞∑
k=0

Ik (9)

i.e. it is the sum of the terms of the impulse response. It is a random variable on which
confidence limits can be placed. The sum of a convolution is equal to the product of the sums
of the convoluting factors. Hence

S = α0/
∑

γn (10)

from which Ŝ can be estimated.

3 Software

The regression model (1) was solved using the OLS method of the statsmodels software package
(Seabold and Perktold, 2010) to give estimates, α̂i, of the regression parameters, αi, from which
estimates of the other parameters were derived. The fit method of OLS returns a class instance
results with properties specifying the parameter estimates and methods which allow confidence
limits to be placed, not only on the parameters themselves, but on any algebraic function of
them. For example, (4), (5) and (10) were used to define a constraint in the form of a null
hypothesis, H, viz.:

H : α̂0 + Ŝ

p̂∑
n=1

α̂n = Ŝ (11)

From (11) a distribution of the probability of estimated sensitivity, Ŝ, was found found using the
t-test method of the results class where the relevant R-matrix tuple corresponding to (11) was
specified as

R = ([1, Ŝ, ..., Ŝ], Ŝ) (12)

In Table 1, the Ljung-Box parameter, Q, and its probability, P , were calculated using the
associated class statsmodels.stats.diagnostic.

4 Global Temperature vs ln(CO2)

We estimated the impulse response of the global average temperature anomaly, T , to the log-
arithm of atmospheric carbon concentration, ln(C), rather than to the concentration, C, itself
Huang and Shahabadi (2014). From this we derived an estimate of sensitivity, S, and its con-
fidence limits using (11) and (12). Note that sensitivity defined here is the response of the
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endogenous variable to unit step function in the exogenous variable whereas climate sensitivity,
Sc, is defined as the response to doubling of CO2 concentration. Hence

Sc = ln(2)S (13)

and similarly for its confidence limits.
Global average temperature anomaly data, T . were taken from the HadCRUT.4.5.0.0 data

set (Morice et al., 2012). Carbon dioxide concentrations, C, were taken from the University of
Melbourne Greenhouse Gas Factsheet (Meinshausen et al., 2017).

The ARX method was applied to annual means of global average temperature, Ti, on the
logarithm of atmospheric CO2 concentration, ln(Ci), for the interval 1850 CE to 2014 CE.
Applying Ljung-Box to the residuals given by (2) for ARX(p), p= 0, ... ,5) gives the results
shown in Table 1. The probability, P , for the ARX(4) run has a value of 0.2534 indicating that
the null hypothesis that the residuals are unselfcorrelated cannot be rejected. Thus the simplest
regression relationship between Ti, and ln(Ci) which unambiguously fits the data is the ARX(4)
model, viz.:

Ti = α̂0ln(Ci) + α̂1Ti−1 + α̂2Ti−2 + α̂3Ti−3 + α̂4Ti−4 , i = 5, ..., N (14)

with the regression coefficient estimates {1.161, 0.509,−0.063, 0.057, 0.199}.
This was used in the t-test method of the results class to determine probability as a function

of estimated sensitivity. From (10), (14) and (13) , we estimated global climate sensitivity as,
Sc = 2.7◦C with 95 percent confidence limits of 2.3◦C and 3.4◦C.

5 Regional Temperature vs ln(CO2)

A netCDF dataset of local mean monthly temperatures for the entire globe was downloadedMorice
et al. (2021). Each temperature value was associated with a 5 degree latitude by 5 degree lon-
gitude spherical rectangle, there being 36 X 72 such rectangles. Time series of annual averages
were computed for each rectangle for comparison with the above-described time series of ln(Ci)
using the ARX(p) method. The Ljung-Box P value was found for candidate values of p in the
range 0 < p ≤ 5. The smallest value of p for which

P > 0.1 (15)

was chosen as the order of the ARX process and (10) solved for S.
Spherical rectangles were eliminated from further processing when the number of years of good

data was less than fifty or when no value of P satisfying (15) could be found. In a surprising

Table 1: Ljung-Box parameter, Q, and its probability, P , for five ARX runs of global average
temperature vs. the logarithm of CO2 concentration.

Run Variables Q P
ARX(0) Ti vs ln(Ci) only 284.1 0.0000
ARX(1) Ti vs ln(Ci), Ti−1 49.0 0.0084
ARX(2) Ti vs ln(Ci),Ti−1,Ti−2 48.2 0.0074
ARX(3) Ti vs ln(Ci),Ti−1 to Ti−3 40.4 0.0358
ARX(4) Ti vs ln(Ci),Ti−1 to Ti−4 29.3 0.2534
ARX(5) Ti vs ln(Ci),Ti−1 to Ti−5 28.6 0.2367
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number of cases p was zero in which case S was simply the first order regression coefficient of
temperature on concentration.

Local sensitivity estimates are mapped in Figure 1. For ease of display S values were rounded
to the nearest integer.

6 Discussion

Local climate sensitivity has been mapped before by Asinimov (2001) using a similar statistical
method. Our map of local sensitivities (Fig 1) and its close resemblance to Asinimov’s map
demonstrate the viability of the present method. Extreme values tend to lie close together: for
example the occurrence of zero values in the North Atlantic and the occurrence of larger values
over land. If our method were not working and only generating noise, there would not be such
good spatial correlation.

High values of in Northern Canada and Siberia suggest that, in these locations, CO2 concen-
tration is the predominant factor controlling nocturnal radiative cooling in the absence of clouds.
High regional values in central China have been noted by Eagle et al. (2013). They were derived
from paleoclimate data and attributed by them to the fundamental role played by planetary-
scale atmospheric dynamics. Low values in the North Atlantic suggest that other factors, such as
submarine volcanism, play a role in modulating Sea Surface Temperature so masking radiative
effects. Two unusually high maritime values of Sc = 4◦C off the SE corner of Australia near
the island of Tasmania could be due to the intermittent incursion of the warm East Australia
Current into this region.

Figure 1 is only the first, tantalizing glimpse of the possibilities presented by applying rigorous
statistical methods to climate. The effect of CO2 concentration on other types of observations,
such as precipitation, wind speed and so on, remain to be explored. The strong spatial gradi-
ents in climate sensitivity observed in places such as California, imply that mean temperature
gradients are also affected by climate change and this too must have meteorological implications.
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