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On the Exchange of Carbon Dioxide between
Atmosphere and Ocean
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Key Points:

• The atmosphere exchanges CO2 with both the mixed layer and the deep ocean.
• The impulse response function of CO2 concentration estimated from observations has

a half-time of 43 years and no remnant fraction.
• Impulse response functions determined by numerical modelling are not supported by

observations.

Corresponding author: John Reid, johnreid2844@gmail.com

–1–



manuscript submitted to JGR: Atmospheres

Abstract
There are two distinct reservoirs which exchange carbon with the atmosphere, the mixed
layer and the deep ocean. Exchanges with the former are noisy because they are influenced
by sea surface temperature which, in turn, depends on weather events such as El Nino.
Exchanges with the deep ocean are steady, long-term and uninfluenced by the weather. The
long term relationship between CO2 concentration due to variations in CO2 emissions is
summarised by the Impulse Response Function. This was estimated from observed time se-
ries as the convolutional inverse of the prediction error filter estimated by the ARX method.
It was found to be a simple exponential with a half-time of 43 years and no remnant compo-
nent. The longer half times and large remnant fraction of the impulse response derived from
ocean circulation models are attributed to the failure of these models to properly account
for turbulent mixing in the deep ocean.

Plain Language Summary

Carbon dioxide in the atmosphere is exchanged rapidly with the upper part of the
ocean, the mixed layer. When the temperature of the mixed layer increases, as it does in the
Pacific Ocean during El Niño events, concentration in the atmosphere briefly increases. On
the other hand, radioactive carbon dioxide from the atom bomb tests steadily disappeared
from the atmosphere once the tests had stopped in 1963, implying that it was absorbed by
the deep ocean below the mixed layer. The relationship between carbon dioxide production
and concentration can be summarised mathematically by the impulse response function or
IRF which is used in climate models to predict future concentrations. We developed a new
method of estimating the IRF directly from the data. This, the observed IRF, is quite
different from the IRF used by climate modellers in that no carbon dioxide is left behind to
build up over centuries. Climate modellers might make better predictions if they used this
observed IRF.
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1 Introduction

Information about the interchange of carbon between various global sinks and reser-
voirs can be found in the IPCC reports (Houghton et al., 2001). Much of this is stated a
priori as the outcome of various model assumptions. Here we adopt an empirical approach
and investigate atmospheric CO2 concentration in the context of concurrent natural and
man-made forcing. One such is El Niño and the increased sea surface temperature (SST)
of the Eastern Equatorial Pacific which accompanies these events. Another is the testing
of nuclear weapons during the 1950s and 1960s which injected significant amounts of the
radioactive isotope of carbon into the atmosphere as 14CO2. The abrupt cessation of atmo-
spheric testing following the Nuclear Test Ban Treaty of 5 August 1963, meant that the rate
of production of the 14C isotope reverted to the constant natural background level. This
allows the movement of carbon dioxide between reservoirs to be assessed in much the same
way that radioactive isotopes are used to assess the rates of metabolic processes in nuclear
medicine.
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Most importantly, the relationship between CO2 production and the resulting atmo-
spheric concentration needs to be better understood. Such a relationship between time
series (or continuous functions) of physical quantities is succinctly summarised by the Im-
pulse Response Function (IRF) which displays how the dependent variable will respond to a
discrete impulse (or delta function) in the independent variable. This can often be estimated
by numerical modelling of the physical processes underlying the relationship between the
variables, for example, by Maier-Reimer & Hasselmann (1987) (MRH) as discussed below.

Alternatively it can be estimated from the data statistically. This is, however, a
notoriously difficult problem (Riad, 1986), involving as it does, the deconvolution of a moving
average (MA) process. Here we circumvent the difficulties of MA processes in two ways:

(i) by decimating the data to remove the blurring effect of the moving average and

(ii) by estimating the statistically significant coefficients of the prediction error filter
(PEF) via the ARX method. The normalized IRF is then the convolutional inverse of the
PEF.

The IRF estimated in this way is less complex and differs significantly from that of
MRH.

2 El Niño

Values of the first differences of the monthly average concentration measured at the
Cape Grim and Mauna Loa observatories are shown in Figures 1a and 1b respectively.
Thirteen month running means are also shown. There is a significant linear trend in both
time series. The standard deviations, σ, of the residuals were 0.14 and 0.30 ppm/month
respectively. The dashed lines show the 2σ confidence limits above and below the trend
lines.

Figure 1c shows the Southern Oscillation Index for the period in question. The SOI
is calculated from the sea level pressure difference between Tahiti and Darwin. Sustained
negative excursions of the SOI are termed El Niño events and are associated with increases
in Sea Surface Temperature in the Eastern Equatorial Pacific as shown in Figure 1d for the
Niño3 region, 5◦N-5◦S, 150◦W-90◦W (Trenberth, 1997). The times of these SST peaks in
Figure 1d are shown by vertical dashed lines in all four panels.

All four El Niño warming events are associated with increases in the running means of
atmospheric CO2 concentration at both Cape Grim and Mauna Loa. This is not surprising.
The solubility of CO2 in sea water is inversely dependent on temperature and it comes out
of the ocean when SST increases. In general, the high frequency noisiness of the monthly
differences can be accounted for by the degassing and absorption of CO2 by the upper part
of the ocean as it is heated and cooled by changing weather systems.

3 The Bomb Test Curve

The decrease in ∆14C is known as “The Bomb Test Curve”. Numerous observations
were made in the decades following the cessation of testing following the Nuclear Test Ban
Treaty. Here we look at a single high quality data set from Fruholmen, Norway (Nydal
& Lövseth, 1983) shown in Figure 2. The natural logarithm, ln(∆14C), is plotted on the
vertical axis rather than ∆14C itself so that exponential behaviour becomes linear.

A regression line was fitted between January 1966 and the end of the data set in June
1993. Regression statistics are shown in Table 1. The fit is remarkably good and accounts
for 98.8 percent of the variance. Hence, with a high degree of accuracy:

∆14C = Ae−t/τ (1)
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where A is the value of ∆14C at t = 0 and τ is the time constant given by τ = −1/slope=
15.9 ± 0.085 years. The time for ∆14C to decay to half its initial value is given by t1/2 =
−τ ln(0.5)= 11.02± .059 years.

Thus half of the bomb test 14CO2 disappears from the atmosphere every 11 years.
Equation (1) is the solution of the classic diffusion equation:

dc

dt
+
c

τ
= F (t) (2)

where c is the concentration of the quantity being diffused (∆14CO2 in this case), τ is the
diffusion time constant and F (t) specifies the rate at which concentration increases due to
new material being introduced into the reservoir. In this case following the cessation of
nuclear testing F (t) is the constant background rate associated with the bombardment of
upper atmosphere Nitrogen by cosmic rays.

Carbon dioxide reacts with water to form carbonate and bicarbonate ions. Hence the
diffusion rate of carbon per se involves reaction rates and diffusion rates for each of these
three species. These are almost completely independent of atomic mass Zeebe (2011) and so
all the isotopes of carbon, 12C, 13C, 14C, in the form of CO2 and its radicles, diffuse through
water at the same rate and the time constant, τ , in (2) applies equally to all isotopic species
of CO2.

It is therefore reasonable to assume that CO2 diffuses from the atmosphere into some
other reservoir or sink. The excellent fit of a single regression line indicates that any diffusion
process must be dominated by a single sink with a single time constant. Furthermore the
fact that the atmospheric ∆14CO2 has, by now, returned to its pre-bomb background level
implies that the sink is much larger than the source, the atmosphere. The only candidate
sink which fulfils these conditions is the deep ocean. Note that the half time for 14CO2

diffusion out of the atmosphere of 11 years is much smaller than the value of 43 years
derived below. Unlike in the latter case, radioactive tracer diffusion is a one way process
because there is no 14CO2 simultaneously diffusing back into the atmosphere

4 The Impulse Response Function

The impulse response function or IRF, I , once known, is a great convenience for
modellers because it allows an endogenous quantity, y(t), to be predicted in terms of present
and past values of the exogenous quantity, x(t), using the convolution

y(t) =

∫ ∞
−∞

I(t′)x(t− t′)dt′ =

∫ ∞
0

I(t′)x(t− t′)dt′ (3)

since I(t′) ≡ 0 for t′ < 0. For display purposes, a normalized IRF, =, is often used where

y(t) =

∫ ∞
0

=(t′)χ(t− t′)dt′ (4)

and χ(t) has been scaled to have the same units as y(t).

In the following, y(t), is the atmospheric CO2 concentration and x(t), is the CO2

emission rate.

4.1 The Model-Derived IRF

A normalized IRF =(t) was derived using a global circulation model by MRH, assuming

=(t) = A0 +

4∑
j=1

Aj exp(−t/τj) (5)
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where the Aj are the proportions corresponding to various decay times, τj . They found time
constants, τj ranging from 1.2 years to 362.9 years and that A0 is non-zero. A very similar
model, the HILDA model, was proposed by Siegenthaler & Joos (1992) which ultimately
became the Bern model of the IPCC reports.

In order to assess the non-linear response of pCO2 to total carbon in the mixed layer,
MRH ran their model using three input emission scenarios comprising increases of (a) qua-
drupling, (b) doubling and (c) increasing by 1.25%, the initial atmospheric CO2 concentra-
tion Values of A0 were 0.131, 0.166 and 0.142 respectively which determine the remnant
fractions of atmospheric CO2 under the three scenarios.

There is something very odd about this. Certainly we might expect a remnant fraction
to remain in the atmosphere once the oceanic reservoir is saturated. What is odd is that the
three remnant fractions are almost the same. In each case, we would expect the reservoir
to take up roughly the same absolute amount of CO2 before it becomes saturated, in which
case a twice the fraction would remain in the atmosphere in the quadrupling case than in
the doubling case, but this is not what happens to the dotted curves in Figure 3.

The similarity of the remnant fractions in the three cases does not imply saturation.
Rather, it implies a partitioning of the available CO2 between two reservoirs with a volume
ratio of the order of (1− r)/r, where r is the remnant fraction. When we apply this to the
MRH model, the oceanic reservoir into which atmospheric CO2 is diffused has only about
six times the CO2 capacity of the atmosphere. Given that the ocean has been estimated
to carry fifty times the steady-state, atmospheric load of CO2 (Houghton et al., 2001), this
is a remarkably small value. It implies that, in the MRH model, CO2 becomes partitioned
between the atmosphere and a small sub-reservoir from which little is absorbed into the
remainder of the ocean.

4.2 Estimating the IRF from Observed Time Series

For notational convenience, in the following, all sample means have been removed and
random variables are assumed to have zero mean.

The autoregressive moving average method with a single exogenous variable, AR-
MAX(p,q), is given at time, i, by:

Yi = α0xi +

p∑
j=1

αj .yi−j +

q∑
k=1

βjΞi−k , i = 1, ..., N (6)

where the dependent random variable is Yi, xi is the exogenous variable, the yi are past
values of Yi and the Ξi are unselfcorrelated random variables with zero mean. The regression
coefficients α0, αj and βj are estimated from the data and p and q are small positive integers.
The notation is intended to make a clear distinction between random variables which are
upper case, and constants, such as past values of random variables, which are lower case.
Equation (6) is a state space representation (Hamilton, 1994) describing states of the system
at a succession of discrete instants; the random variable, Yi, at one instant becomes the
constant, yi, in the following instant. The direction of time is important in regression,
which, unlike correlation, allows causality to be inferred (Granger, 1969).

There are software packages for ARMAX parameter estimation available under the
aegis of the major programming languages. Unfortunately some of these are flawed, because
they estimate the exogenous parameter, α0, prior to estimating the other parameters, leading
to omitted-variable bias (Greene, 2003); all parameters must be estimated simultaneously
in a regression model.

Estimation of the MA coefficients, {βi}, requires an iterative Kalman filter method
which may not converge. The second, moving average summation in (6), describes a con-
voluting or “blurring” function, so that q > 1 when the sampling interval, ∆t, is too small.
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Estimation of the MA coefficients can be avoided by decimating the time series by q to give
a new time series with a larger sampling interval, q∆t, for which the innovation sequence,
{Ξm}, is unselfcorrelated. Then (6) becomes

Ym = α0xm +

p∑
n=1

αn.ym−n + Ξm , m = 1, ...,M (7)

where m = qi, qM ≤ N , The model summarized by (7) is an ARX(p) model (for ‘au-
toregressive with exogenous variable’). The regression coefficients, αi, and their confidence
limits are estimated using Ordinary Least Squares. The sequence of residuals, {ξm}, is given
by

ξm = ym −

(
α̂0xm +

p∑
n=1

α̂n.ym−n

)
, m = 1, ...,M (8)

where ym is the sample value or ‘realization’ of Ym and α̂0 to α̂p are the regression coefficient
estimates. The {ξm} are tested using the Q statistic with probability P (Ljung & Box, 1978).
The minimum number of coefficients, p̂, is found for which P is greater than some confidence
level, say 0.1, for which it can be assumed the innovation sequence is not self-correlated.

Our best estimate of the relationship between the two time series is then

p̂∑
n=0

γ̂nym−n = α̂0xm (9)

where
γ̂0 = 1 (10)

and
γ̂n = −α̂n , n = 1, ..., p̂ (11)

The sequence {γn} specified by (9) is the prediction error filter of the autoregressive process.
(Reid, 1979).

The discrete equivalents of the continuous IRFs defined by (3) and (4) are

yi =

∞∑
p=0

Ipxi−p = α0

∞∑
p=0

=pxi−p , i = 1, ..., N (12)

Thus, the normalized FIR, =, is the convolutional inverse of the prediction error filter {γi}.

The simplest regression relationship between yi and xi is the ARX(1) model in which
αi ≡ 0 for i > 1, i.e.

yi = α0xi + α1yi−1 + ξi , i = 1, ..., N (13)

which, by recursive substitution of yi becomes

yi = α0

∞∑
p=0

αp1xi−p +

∞∑
p=0

αp1ξi , i = 1, ..., N (14)

that is

yi =

∞∑
p=0

Ipxi−p + ηi , i = 1, ..., N (15)

where Ip is the impulse response function and ηi is a random variable with zero mean. The
prediction error filter is {1,−α1} which has convolutional inverse {1, α1, α

2
1, ...}, a geometric

sequence with common ratio α1. The nth term of the IRF is given by

In = α0α
n
1 = α0 exp(−nq∆t

τ
) (16)
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and the impulse response can be regarded as discretely sampled from a continuous expo-
nential function with time constant given by

τ = −q∆tln(α̂1) (17)

Equation (15) has the form of a regression model so one may well ask, why not use it
to estimate the Ip directly from the data? The reason is that (15) is not a regression model
because ηi is the outcome of a moving average process and so is highly self-correlated. We
have avoided the pitfalls of MA processes by estimating the convolutional inverse of the
IRF rather than the IRF itself. Further discussion is given by Maillet et al. (2023).

4.3 Sensitivity

The sensitivity of the system, S, is defined here as the response at infinity to a unit
step function, Hj , where Hj = 0 for j < 0 and Hj = 1 for j ≥ 0.

S = lim
k→∞

Sk = lim
k→∞

∑
i+j=k

IiHj =

∞∑
k=0

Ik (18)

i.e. it is the sum of the terms of the impulse response. Its estimate, Ŝ, is a random variable
on which confidence limits can be placed.

4.4 Application to Carbon Dioxide Concentration

The above method was applied to annual means (Meinshausen et al., 2017) of atmo-
spheric CO2 concentration, Ci as yi, vs global fossil fuel emissions, Ei as xi. The latter were
downloaded for the interval 1850 to 2014 from the Carbon Dioxide Information Analysis
Center (Boden et al., 2017).

Applying the Ljung-Box test to the residuals given by (8) for ARX(p) for p = 0, ..., 5
resulted in zero probabilities in all cases. The ARMAX method revealed a significant moving
average component with q = 2. For this reason both time series were decimated by 2 and
the ARX / Ljung-Box method reapplied. The results for the decimated data are shown in
Table 2. The probability, P , for the ARX(1) run has a value of 0.4359 indicating that the
null hypothesis that the residuals are unselfcorrelated cannot be rejected.

The estimated regression coefficients are α̂0 = 0.21 and α̂1 = 0.969 with 95 percent
confidence limits 0.945 and 0.992. Substituting α̂1 and into (17) and multiplying by ln(2)
gives a half-time of 43 years. The normalized impulse response is shown in Figure 3 along
with those of Figure 17 of MRH.

The sensitivity estimate, S, was 6.77 p.p.m.GtCO−12 .year with 95 percent, t-test confi-
dence limits of 4.03 and 20.15 p.p.m.GtCO−12 .year. The probability that S > 105 was 0.012
whereas the sensitivity of the IRF due to MRH is infinite. We can conclude that A0 = 0 in
(5) implying no significant remnant fraction.

5 Discussion

Month by month variations in atmospheric carbon dioxide concentrations are due to
the absorption and out-gassing of CO2 by the mixed layer of the ocean as it is warmed and
cooled by fluctuating weather systems such as El Niño.

The precise fit of the regression line in Figure 2 is in sharp contrast to the noisiness
of the monthly rates of change shown Figure 1. This apparent contradiction is resolved
when we consider the mixed layer Kraus & Turner (1967). The mixed layer is a turbulent
layer in which winds and waves have homogenized temperature and chemistry down to some
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depth which varies between about 10m and 200m. Wind stress increases the depth while
solar radiation in calm conditions renews stratification. Because of its turbulent nature,
the mixed layer is in intimate contact with the atmosphere, so that heat and soluble gases
exchange rapidly between the two reservoirs. The highly stratified thermocline lies below
the mixed layer. Apart from regions of upwelling and downwelling, heat and dissolved
substances are transferred through the thermocline to and from the deep ocean largely by
diffusion.

In effect then, there are three reservoirs: the atmosphere, the mixed layer and the
deep ocean. At time scales of months, exchange of CO2 between the mixed layer and the
atmosphere predominate whereas at time scales of years to decades, the exchange of CO2

between the deep ocean and the mixed layer predominates. At these longer time scales the
mixed layer and atmosphere can be regarded as a single reservoir. The rapid variations in
temperature seen in Figure 1d only involve the atmosphere and the mixed layer. On the
other hand the variation in ∆14CO2 of Figure 2 is the result of the much slower rate of
diffusion of 14CO2 from the atmosphere/mixed layer reservoir into the deep ocean.

At longer time scales, the response of the carbon dioxide concentration in the atmo-
sphere to a perturbation in production rate is governed by a first order differential equation.
Hence variations over time are smoothed by the convolution of the perturbation with the
impulse response curve characterising that equation. The estimated impulse response curve
is exponential with a half-time of 43 years and zero remnant fraction.

The impulse response and sensitivity of CO2 concentration estimated statistically are
quite different from model-derived values. A possible explanation is the following: the real
deep ocean is bounded by a turbulent mixed layer and by the highly turbulent Antarctic
Circumpolar Current and will therefore be internally mixed by a Kolmogorov cascade of
turbulent eddies, some with spatial scales as large as ocean basins and with time scales of,
perhaps, decades. Turbulence is a stochastic phenomenon which is difficult to observe at
large spatial and temporal scales and which cannot be readily emulated by deterministic
models. The complexity of the eddy transports noted by Kamenkovich et al. (2021) calls
for reconsideration of how they are estimated in practice, particularly in general circulation
models. Eddy diffusion generated by such eddy transports would greatly increase the ca-
pacity of the deep ocean to absorb carbon dioxide and so would account for the shorter half
time of the observed impulse response of atmospheric CO2 concentration.

In contrast, in numerical models the deep ocean CO2 reservoir is confined to the body
water which participates in the “conveyor-belt” transport. This is a much smaller volume. In
the models, the volume of the conveyor belt water becomes saturated. Alone it is insufficient
to absorb all of the atmospheric CO2 with which it comes into contact and so leaves behind
a remnant fraction.

6 Conclusion

Whatever the explanation, there is no observational evidence for the long half times
and remnant fraction of atmospheric CO2 concentration predicted by numerical models of
the ocean atmosphere carbon cycle. In future, the tendency of climate models to“run hot”
(Hausfather et al., 2022) could well be overcome by using an empirical impulse response
function such as that derived here.
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Statistic Value

slope -.06289
intercept −7.76× 10−15

r -0.9939
r2 0.9878

standard error .0003395

Table 1. Regression Statistics

Run Q pvalue

C(t) vs E(t) only 513.5 0.0000
C(t) vs E(t), C(t-1) 28.5 0.4359
C(t) vs E(t),C(t-1),C(t-2) 28.6 0.3830
C(t) vs E(t) to C(t-3) 24.5 0.5483
C(t) vs E(t) to C(t-4)) 24.3 0.5049
C(t) vs E(t) to C(t-5) 22.0 0.5796

Table 2. Ljung-Box parameter, Q, and its probability, P , for five ARX runs of CO2 concentration,

C, vs. global fossil fuel emissions, E. Both time series were decimated by 2.
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Figure 1. Monthly rate of change in atmospheric CO2 concentration (grey) and 13 month

running mean (black) at Cape Grim (a) and Mauna Loa (b). Horizontal dashed lines show 2σ

confidence limits. c. Southern Oscillation Index. d. Sea Surface Temperature anomaly of the Niño

3 region of the Equatorial Pacific. Vertical dashed lines are times of peak SST.
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Figure 2. The natural logarithm of ∆14C values recorded at Fruholmen, Norway as a function

of timeDashed line: regression line fitted between January 1966 and June 1993.

.
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Figure 3. The normalized impulse response, =, of Carbon Dioxide concentration due to an

impulse in CO2 emissions derived from observed time series using the ARX method (solid line).

Also shown are the model-derived, normalized impulse response functions corresponding to the

three emissions scenarios of of Maier-Reimer & Hasselmann (1987) (broken lines).
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